Complete Segal Spaces as a model of Higher Categories

M.Sc. Thesis

Chirantan Mukherjee

Advisors: Dr. Nima Rasekh and Prof. Edoardo Ballico

Table of contents

- 1 Category Theory
- 2 Why Higher Category?
- 3 Background
- 4 Two Versions of Simplicial Sets
- 5 Model Categories
- 6 Complete Segal Spaces
- 7 Twisted Arrow Construction

8 References

Category Theory

A category consists of,

class of objects, x, y, z

A category consists of,

- class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$

A category consists of,

- class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$
- 3 composition rule

A category consists of,

- 1 class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$
- 3 composition rule

such that

 each object has a designated identity morphism

A category consists of,

- class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$
- 3 composition rule

such that

- each object has a designated identity morphism
- 2 each morphism has a specified source and target

A category consists of,

- 1 class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$
- 3 composition rule

such that

- each object has a designated identity morphism
- 2 each morphism has a specified source and target
- 3 composition is associative

A category consists of,

- 1 class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$
- 3 composition rule

such that

- each object has a designated identity morphism
- 2 each morphism has a specified source and target
- 3 composition is associative

Example

The category of finite ordinal numbers Δ ,

1 objects are [0], $[1] = \{0 \rightarrow 1\}, \dots$

2/30

A category consists of,

- 1 class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$
- 3 composition rule

such that

- each object has a designated identity morphism
- 2 each morphism has a specified source and target
- 3 composition is associative

Example

The category of finite ordinal numbers Δ ,

- 1 objects are [0], $[1] = \{0 \rightarrow 1\}, \dots$
- 2 order preserving maps, $[n] \rightarrow [m]$

A category consists of,

- 1 class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$
- 3 composition rule

such that

- each object has a designated identity morphism
- 2 each morphism has a specified source and target
- 3 composition is associative

Example

The category of finite ordinal numbers Δ ,

- 1 objects are [0], $[1] = \{0 \rightarrow 1\}, \dots$
- 2 order preserving maps, $[n] \rightarrow [m]$
- 3 transitivity, $[n] \rightarrow [m]$ and $[m] \rightarrow [p] \implies [n] \rightarrow [p]$

A category consists of,

- 1 class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$
- 3 composition rule

such that

- each object has a designated identity morphism
- 2 each morphism has a specified source and target
- 3 composition is associative

Example

The category of finite ordinal numbers Δ ,

- 1 objects are [0], $[1] = \{0 \rightarrow 1\}, \dots$
- 2 order preserving maps, $[n] \rightarrow [m]$
- 3 transitivity, $[n] \rightarrow [m]$ and $[m] \rightarrow [p] \implies [n] \rightarrow [p]$

such that

1 reflexivity, $[n] \rightarrow [n]$

A category consists of,

- 1 class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$
- 3 composition rule

such that

- each object has a designated identity morphism
- 2 each morphism has a specified source and target
- 3 composition is associative

Example

The category of finite ordinal numbers Δ ,

- 1 objects are [0], $[1] = \{0 \rightarrow 1\}, \dots$
- 2 order preserving maps, $[n] \rightarrow [m]$
- 3 transitivity, $[n] \rightarrow [m]$ and $[m] \rightarrow [p] \implies [n] \rightarrow [p]$

such that

- **1** reflexivity, $[n] \rightarrow [n]$
- 2 source: [n], target: [m]

A category consists of,

- 1 class of objects, x, y, z
- **2** class of morphisms, $x \rightarrow y$
- 3 composition rule

such that

- each object has a designated identity morphism
- 2 each morphism has a specified source and target
- 3 composition is associative

Example

The category of finite ordinal numbers Δ ,

- 1 objects are [0], $[1] = \{0 \rightarrow 1\}, \dots$
- 2 order preserving maps, $[n] \rightarrow [m]$
- 3 transitivity, $[n] \rightarrow [m]$ and $[m] \rightarrow [p] \implies [n] \rightarrow [p]$

such that

- **1** reflexivity, $[n] \rightarrow [n]$
- 2 source: [n], target: [m]
- 3 $([n] \rightarrow [m]) \rightarrow [p] = [n] \rightarrow ([m] \rightarrow [p])$

Why Higher Category?

Definition

For a pointed topological space (X, x), the **loop space** $\Omega_x X$ is defined as the set of all continuous maps,

$$\Omega_X X \colon (\mathcal{S}^1, *) \to (X, X)$$

Definition

For a pointed topological space (X, x), the **loop space** $\Omega_x X$ is defined as the set of all continuous maps,

$$\Omega_X X: (\mathcal{S}^1, *) \to (X, X)$$

Intuitively we would like to think of the loop space as a **topological group** with the group structure given by the concatenation operation.

Definition

For a pointed topological space (X, x), the **loop space** $\Omega_x X$ is defined as the set of all continuous maps,

$$\Omega_X X: (\mathcal{S}^1, *) \to (X, X)$$

Intuitively we would like to think of the loop space as a **topological group** with the group structure given by the concatenation operation.

Note

Composition of loops is neither associative nor unital nor has an inverse. Rather all of these only hold up to **homotopy**.

Definition

For a pointed topological space (X, x), the **loop space** $\Omega_x X$ is defined as the set of all continuous maps,

$$\Omega_X X: (\mathcal{S}^1, *) \to (X, X)$$

Intuitively we would like to think of the loop space as a **topological group** with the group structure given by the concatenation operation.

Note

Composition of loops is neither associative nor unital nor has an inverse. Rather all of these only hold up to **homotopy**.

The way to make them groups is by moving to higher categories (A_{∞} space).

Background

Conclusion

The category theory of complete Segal spaces has **not** been studied in details. This thesis aims to fill this void!

Chirantan Mukherjee

CSS as a model of Higher Categories

March 18, 2022

5 / 30

Two Versions of Simplicial Sets

A simplicial set is a contravariant functor $X: \Delta^{op} \to Set$

A simplicial set is a contravariant functor $X: \Delta^{op} \to Set$

Note

By the Yoneda lemma, for any **sSet** *X* we have,

 $X_n \cong Hom_{\mathbf{sSet}}(\Delta^n, X)$

Let, C be a small category. Define the **nerve** of C to be the **sSet**, NC as follows:

Let, C be a small category. Define the **nerve** of C to be the **sSet**, NC as follows:

 $\blacksquare NC_0 = Ob(C) = \{\bullet\}$

7/30
Let, C be a small category. Define the **nerve** of C to be the **sSet**, NC as follows:

$$\blacksquare NC_0 = Ob(C) = \{\bullet\}$$

$$\blacksquare \ \mathcal{NC}_1 = \mathcal{Mor}(\mathcal{C}) = \{\bullet \to \bullet\}$$

7/30

Let, C be a small category. Define the **nerve** of C to be the **sSet**, NC as follows:

- $\blacksquare NC_0 = Ob(C) = \{\bullet\}$
- $\blacksquare NC_1 = Mor(C) = \{\bullet \to \bullet\}$
- $\blacksquare \ \mathcal{NC}_2 = \{ \text{pair of composable arrows } \bullet \to \bullet \to \bullet \text{ in } \mathcal{C} \}$

Let, C be a small category. Define the **nerve** of C to be the **sSet**, NC as follows:

$$\blacksquare NC_0 = Ob(C) = \{\bullet\}$$

$$\blacksquare \ \mathcal{NC}_1 = \mathcal{Mor}(\mathcal{C}) = \{\bullet \to \bullet\}$$

■
$$NC_2 = \{ \text{pair of composable arrows } \bullet \to \bullet \to \bullet \text{ in } C \}$$

$\blacksquare \ \mathcal{NC}_n = \{ \text{strings of } n \text{ composable arrows } \bullet \to \bullet \dots \bullet \to \bullet \text{ in } \mathcal{C} \}$

Let, C be a small category. Define the **nerve** of C to be the **sSet**, NC as follows:

$$\blacksquare \ \mathcal{NC}_0 = \mathcal{Ob}(\mathcal{C}) = \{\bullet\}$$

$$\blacksquare \ \mathcal{NC}_1 = \mathcal{Mor}(\mathcal{C}) = \{\bullet \to \bullet\}$$

$$\blacksquare \ NC_2 = \{ pair of composable arrows \bullet \to \bullet \to \bullet \text{ in } C \}$$

$\blacksquare \ \mathcal{NC}_n = \{ \text{strings of } n \text{ composable arrows } \bullet \to \bullet \dots \bullet \to \bullet \text{ in } \mathcal{C} \}$

Version I

The nerve functor transforms any category into a **sSet**.

Theorem ([Seg68])

Let X be a simplicial set that satisfies the Segal condition. Then there exists a category C such that X is equivalent to NC.

Theorem ([Seg68])

Let X be a simplicial set that satisfies the Segal condition. Then there exists a category C such that X is equivalent to NC.

Definition ([Rez01])

A simplicial set X satisfies the **Segal condition** if the map

$$X_n \xrightarrow{\cong} X_1 \underset{X_0}{\times} \ldots \underset{X_0}{\times} X_1$$

is a bijection for $n \ge 2$.

Theorem ([Seg68])

Let X be a simplicial set that satisfies the Segal condition. Then there exists a category C such that X is equivalent to NC.

Definition ([Rez01])

A simplicial set X satisfies the **Segal condition** if the map

$$X_n \xrightarrow{\cong} X_1 \underset{X_0}{\times} \ldots \underset{X_0}{\times} X_1$$

is a bijection for $n \ge 2$.

Example

NC

The geometric realization is a functor

```
|-|: sSet \rightarrow CGHaus
```

The geometric realization is a functor

|-|: sSet \rightarrow CGHaus

Example

$$|\Delta^n| = \{ (x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n x_i = 1, 0 \le x_i \le 1 \}$$

The geometric realization is a functor

|-|: sSet \rightarrow CGHaus

Example

$$|\Delta^n| = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n x_i = 1, 0 \le x_i \le 1\}$$

Lemma

The geometric realization of a simplicial set X is

$$X|\cong \varinjlim_{\Delta^n\to X} |\Delta^n|$$

March 18, 2022 9 / 30

The geometric realization functor is left adjoint to the **singular complex functor**,

The geometric realization functor is left adjoint to the **singular complex functor**,

Version II

The singular complex functor transforms any CGHaus into a sSet.

But what kind of **sSet** do we obtain from the singular complex functor?

Chirantan Mukherjee

11/30

But what kind of **sSet** do we obtain from the singular complex functor?

Note

This is always a Kan complex.

But what kind of sSet do we obtain from the singular complex functor?

Note

This is always a Kan complex.

Definition

A simplicial set X is a **Kan complex** if every every horn in X has a filler,

Version I

The nerve functor transforms any category into a **sSet**.

Version I

The nerve functor transforms any category into a **sSet**.

The **sSet** is levelwise $X_l = Hom(\Delta^l, X)$.

Version I

The nerve functor transforms any category into a **sSet**.

The **sSet** is levelwise $X_l = Hom(\Delta^l, X)$.

Version II

The singular complex functor transforms any CGHaus into a sSet.

Version I

The nerve functor transforms any category into a **sSet**.

The **sSet** is levelwise $X_l = Hom(\Delta^l, X)$.

Version II

The singular complex functor transforms any CGHaus into a sSet.

The **sSet** is levelwise $X_n = Hom(F(n), X)$.

Version I

The nerve functor transforms any category into a **sSet**.

The **sSet** is levelwise $X_l = Hom(\Delta^l, X)$.

Version II

The singular complex functor transforms any CGHaus into a sSet.

The **sSet** is levelwise $X_n = Hom(F(n), X)$.

Definition

A simplicial space X is defined as, $Fun(\Delta^{op} \times \Delta^{op}, Set)$.

Version I

The nerve functor transforms any category into a **sSet**.

The **sSet** is levelwise $X_l = Hom(\Delta^l, X)$.

Version II

The singular complex functor transforms any CGHaus into a sSet.

The **sSet** is levelwise $X_n = Hom(F(n), X)$.

Definition

A simplicial space X is defined as, $Fun(\Delta^{op} \times \Delta^{op}, Set)$.

The **sS** is levelwise $X_{nl} = Hom(F(n) \times \Delta^l, X)$

Note

F(n) generates the columns and Δ^{l} generates the rows.

Chirantan Mukherjee

CSS as a model of Higher Categories

March 18, 2022

13/30

Model Categories

Reedy Fibrant Simplicial Space

Definition

A simplicial space X is called **Reedy fibrant** if $\forall n \ge 0$, the maps,

$$Map_{sS}(F(n), X) \twoheadrightarrow Map_{sS}(\partial F(n), X)$$

are Kan fibrations.

Reedy Fibrant Simplicial Space

Definition

A simplicial space X is called **Reedy fibrant** if $\forall n \ge 0$, the maps,

$$Map_{sS}(F(n), X) \rightarrow Map_{sS}(\partial F(n), X)$$

are Kan fibrations.

Example

F(n) is a Reedy fibrant simplicial space $\forall n \ge 0$.

Segal Space

Definition

A Reedy fibrant simplicial space X is a Segal space if the maps,

$$X_n \stackrel{\simeq}{\longrightarrow} X_1 \underset{X_0}{ imes} \cdots \underset{X_0}{ imes} X_1$$

are Kan equivalences $\forall n \geq 2$.

Note

The Segal condition does not guarantee uniqueness but only existence.

Chirantan Mukherjee

CSS as a model of Higher Categories

March 18, 2022

16 / 30

Composition

Definition

Composition

Definition

$$\begin{array}{ccc} Comp(f,g) & \longrightarrow & map_X(x,y,z) & \xrightarrow{d_1} & map_X(x,z) \\ & \downarrow \simeq & & \downarrow \simeq & \\ & \Delta^0 & \longrightarrow & map_X(x,y) \times map_X(y,z) \end{array}$$

Previous Example

17/30

Complete Segal Spaces

Let, I(1) be a category with two objects x, y and an invertible morphism between them,

 $\mathcal{N}(I)_0 = \{x, y\}$

Let, I(1) be a category with two objects x, y and an invertible morphism between them,

$$\mathcal{N}(I)_0 = \{x, y\}$$

Definition

For a Segal space X, the **homotopy category** of X, denoted as HoX is defined as follows:

Let, I(1) be a category with two objects x, y and an invertible morphism between them,

$$\mathcal{N}(I)_0 = \{x, y\}$$

Definition

For a Segal space X, the **homotopy category** of X, denoted as HoX is defined as follows:

1 objects of HoX are the objects of X, i.e. X_{00}

Let, I(1) be a category with two objects x, y and an invertible morphism between them,

$$\mathcal{N}(I)_0 = \{x, y\}$$

Definition

For a Segal space X, the **homotopy category** of X, denoted as HoX is defined as follows:

- **1** objects of *HoX* are the objects of *X*, i.e. X_{00}
- **2** morphism of *HoX*, $Hom_{HoX}(x, y) = \pi_0(map_X(x, y))$
Example

Let, I(1) be a category with two objects x, y and an invertible morphism between them,

$$\mathcal{N}(I)_0 = \{x, y\}$$

Definition

For a Segal space X, the **homotopy category** of X, denoted as HoX is defined as follows:

- **1** objects of HoX are the objects of X, i.e. X_{00}
- **2** morphism of *HoX*, $Hom_{HoX}(x, y) = \pi_0(map_X(x, y))$
- **3** composition of *HoX*,

$$egin{aligned} \mathsf{Hom}_{\mathsf{HoX}}(x,y) imes \mathsf{Hom}_{\mathsf{HoX}}(y,z) &
ightarrow \mathsf{Hom}_{\mathsf{HoX}}(x,z) \ ([f],[g]) \mapsto [f \circ g] \end{aligned}$$

Complete Segal Space

Definition

For a Segal space *X*, the **space of homotopy equivalences** of *X*, $X_{hoequiv}$ is a subspace of X_1 such that every map in $X_{hoequiv} \subset X_1$ is a homotopy equivalence.

Complete Segal Space

Definition

For a Segal space *X*, the **space of homotopy equivalences** of *X*, $X_{hoequiv}$ is a subspace of X_1 such that every map in $X_{hoequiv} \subset X_1$ is a homotopy equivalence.

Definition

A Segal space X is called a **complete Segal space** if the map,

$$s_0 \colon X_0 o X_{hoequiv}$$

is an equivalence of spaces.

Twisted Arrow Construction

To any category **C**, we can associate a **twisted arrow category**, $Tw(\mathbf{C})$, where,

To any category **C**, we can associate a **twisted arrow category**, $Tw(\mathbf{C})$, where,

1 the **objects** are morphisms $C \xrightarrow{f} D$ in **C** for $C, D \in \mathcal{O}(\mathbf{C})$

To any category **C**, we can associate a **twisted arrow category**, $Tw(\mathbf{C})$, where,

1 the **objects** are morphisms $C \xrightarrow{f} D$ in **C** for $C, D \in \mathcal{O}(\mathbf{C})$

2 the morphisms are commutative diagram $\begin{array}{c} C \xrightarrow{k} C' \\ f \downarrow & \downarrow g \end{array}$

 $D \leftarrow D'$

To any category **C**, we can associate a **twisted arrow category**, $Tw(\mathbf{C})$, where,

1 the **objects** are morphisms $C \xrightarrow{f} D$ in **C** for $C, D \in \mathcal{O}(\mathbf{C})$

2 the morphisms are commutative diagram $\begin{array}{ccc}
C & \xrightarrow{k} & C' \\
f \downarrow & & \downarrow g \\
D & \xleftarrow{h} & D'
\end{array}$

3 and composition of mophisms $\begin{array}{c} C \xrightarrow{k'} C' \\ f \downarrow & \downarrow f' \\ D \xleftarrow{h'} D' \end{array}$ and

$$\begin{array}{ccc} C' & \xrightarrow{k''} & C'' \\ f' \downarrow & & \downarrow f'' \\ D' & \xleftarrow{h''} & D'' \end{array} & \text{are commutative diagram} & \begin{array}{ccc} C & \xrightarrow{k'' \circ k'} & C'' \\ f \downarrow & & \downarrow f'' \\ D & \xleftarrow{h''} & D'' \end{array}$$

Definition

If X is a quasi-category, then Tw(X) is a simplicial set, i.e. explicitly,

$$\mathit{Tw}(X)_n = \mathit{Hom}_{\mathsf{sSet}}((\Delta^n)^{\mathit{op}} * \Delta^n, X) \cong X_{2n+1}$$

Definition

If X is a quasi-category, then Tw(X) is a simplicial set, i.e. explicitly,

$$\mathit{Tw}(X)_n = \mathit{Hom}_{\mathsf{sSet}}((\Delta^n)^{\mathit{op}} st \Delta^n, X) \cong X_{2n+1}$$

Lemma

There is a forgetful functor, $Tw(X) \rightarrow X^{op} \times X$

Definition

If X is a quasi-category, then Tw(X) is a simplicial set, i.e. explicitly,

$$\mathit{Tw}(X)_n = \mathit{Hom}_{\mathsf{sSet}}((\Delta^n)^{\mathit{op}} st \Delta^n, X) \cong X_{2n+1}$$

Lemma

There is a forgetful functor, $Tw(X) \rightarrow X^{op} \times X$

Definition

If X is a simplicial space, $Tw(X)_{mn} := X_{2m+1,n}$, i.e. concretely,

$$Tw(F(m)) = F(2m+1)$$

 $Tw(\Delta^n) = \Delta^n$

Theorem

If X is a complete Segal space, then Tw(X) is a complete Segal space.

Theorem

If X is a complete Segal space, then Tw(X) is a complete Segal space.

The main steps are the following

Theorem

If X is a complete Segal space, then Tw(X) is a complete Segal space.

The main steps are the following

1 Tw(X) is Reedy fibrant

Theorem

If X is a complete Segal space, then Tw(X) is a complete Segal space.

The main steps are the following

- **1** Tw(X) is Reedy fibrant
- **2** Tw(X) is a Segal space

Theorem

If X is a complete Segal space, then Tw(X) is a complete Segal space.

The main steps are the following

- **1** Tw(X) is Reedy fibrant
- **2** Tw(X) is a Segal space
- **3** Tw(X) is a complete Segal space

Theorem

If X is a complete Segal space, then Tw(X) is a complete Segal space.

The main steps are the following

- **1** Tw(X) is Reedy fibrant
- **2** Tw(X) is a Segal space
- **3** Tw(X) is a complete Segal space

Theorem

The projection map $Tw(X) \rightarrow X^{op} \times X$ is a left fibration.

22/30

If X is a Reedy fibrant simplicial space, then Tw(X) is also a Reedy fibrant simplicial space.

If X is a Reedy fibrant simplicial space, then Tw(X) is also a Reedy fibrant simplicial space.

Proof Idea:

We analyze $Map(\partial F(n), Tw(X))$ and describe it as a colimit of the space X_{2n-1} and X_{2n-3} to prove

 $Map(F(n), Tw(X)) \rightarrow Map(\partial F(n), Tw(X))$

is a Kan fibration.

If X is a Segal space, then Tw(X) is also a Segal space.

If X is a Segal space, then Tw(X) is also a Segal space.

Proof Idea:

For n = 2,

we obtain
$$Tw(X)_2 \xrightarrow{\simeq} Tw(X)_1 \underset{Tw(X)_0}{\times} Tw(X)_1$$
.

If X is a complete Segal space, then Tw(X) is a complete Segal space.

If X is a complete Segal space, then Tw(X) is a complete Segal space.

Proof Idea:

•
$$Tw(HoX) \simeq HoTw(X)$$

If X is a complete Segal space, then Tw(X) is a complete Segal space.

Proof Idea:

- $Tw(HoX) \simeq HoTw(X)$
- Pullback squares,

we obtain, $Tw(X)_0 \xrightarrow{\simeq} Tw(X)_{hoequiv}$ is an equivalence of spaces.

Theorem

The projection map $Tw(X) \rightarrow X^{op} \times X$ is a left fibration.

Theorem

The projection map $Tw(X) \rightarrow X^{op} \times X$ is a left fibration.

Proof Idea:

• The map $Tw(X) \rightarrow X^{op} \times X$ is a Reedy fibration.

Chirantan Mukherjee

Theorem

The projection map $Tw(X) \rightarrow X^{op} \times X$ is a left fibration.

Proof Idea:

- The map $Tw(X) \rightarrow X^{op} \times X$ is a Reedy fibration.
- If X is a Segal space then the following diagram is a homotopy pullback square,

$$\begin{array}{cccc} Tw(X)_1 & \longrightarrow & Tw(X)_0 \\ & \downarrow & & \downarrow \\ & X_1^{op} \times X_1 & \longrightarrow & X_0^{op} \times X_0 \end{array}$$

References I

- John. M. Boardman and R. M. Vogt. Homotopy invariant algebraic structures on topological spaces. Springer, 1973.
- André Joyal and Myles Tierney. Quasi-categories vs segal spaces. Contemp. Math., 431, 08 2006.

Bertrand Toen.

Vers une axiomatisation de la théorie des catégories supérieures. K-theory, 34:233–263, 2005.

Jacob Lurie.

On the classification of topological field theories. Current Developments in Mathematics, 2008.

References II

Graeme Segal.

Classifying spaces and spectral sequences. Publications Mathématiques de l'IHÉS, vol. 34, pp. 105–112, 1968.

Charles Rezk.

A model for the homotopy theory of homotopy theory. Trans. Amer. Math. Soc. 353, 973-1007, 2001.

Andre Joyal.

Quasi-categories and kan complexes. Journal of Pure and Applied Algebra, 175(1-3):207–222, nov 2002.

Jacob Lurie.

Higher topos theory. Princeton University Press, 2009.

References III

- Emily Riehl and Dominic Verity. Elements of ∞-Category Theory. Cambridge University Press, 2022.
- ٢

André Joyal.

The theory of quasi-categories and its applications, 2008. https:

//mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf

André Joyal.

Notes on quasi-categories, 2008. http://www.math.uchicago.edu/~may/IMA/Joyal.pdf

Julia Bergner.

A Survey of $(\infty, 1)$ -Categoriess, 2006. https://arxiv.org/abs/math/0610239

References IV

Julia Bergner.

Equivalence of models for equivariant (∞ , 1)-categories, 2014. https://arxiv.org/abs/1408.0038

٢

Nima Rasekh.

Introduction to complete segal spaces, 2018. https://arxiv.org/abs/1805.03131

Chirantan Mukherjee. *Twisted Arrow Construction for Segal Spaces*, 2022. https://arxiv.org/abs/2203.01788